US009384137B2

a2 United States Patent

(10) Patent No.: US 9,384,137 B2

Caulkins (45) Date of Patent: Jul. 5, 2016
(54) PROGRESSIVE PRE-CACHING 2212/1016 (2013.01); GOGF 2212/2515
(2013.01); GO6F 2212/305 (2013.01); GO6F
(71) Applicant: Jason Caulkins, Issaquah, WA (US) 2212/601 (2013.01); GOGF 2212/7201
(2013.01)
(72) Inventor: Jason Caulkins, Issaquah, WA (US) (58) Field of Classification Search
CPC GOG6F 12/0862; GOGF 12/0833; GO6F
(73) Assignee: DATARAM, Inc., Bellevue, WA (US) 2212/62; GOG6F 2212/6022; G11C 7/1072
See application file for complete search history.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Gurtej Bansal
U.S.C. 154(b) by 118 days. (74) Attorney, Agent, or Firm — Donald R. Boys; Central
Coast Patent Agency, Inc.
(21) Appl. No.: 14/489,927
57 ABSTRACT
(22) Filed: Sep. 18, 2014 A system includes a computerized appliance connected to a
. L network, a processor, a persistent memory, a dynamic random
(65) Prior Publication Data access menriory, and so?tware executingrgn ch processor, the
US 2015/0242325 Al Aug. 27,2015 software provides for installing an application, storing data to
beused in execution of the application, mapping logical block
Related U.S. Application Data addresses at which particular data is stored to data in an order
of expected use, the data-use profile listing an expected order
(63) Continuation-in-part of application No. 14/188,304, of data use in execution of the application, configuring the
filed on Feb. 24, 2014, now Pat. No. 9,250,762. DRAM with a cache of a specific data capacity, transferring a
block of data equal to the cache size into the cache according
(51) Int.CL to the order of data in the data-use profile, and as data is used
GO6F 12/00 (2006.01) in execution of the application, emptying used data from the
GOGF 12/08 (2016.01) cache and transferring not-yet-used data from persistent stor-
GO6F 12/12 (2016.01) age into the cache according to the order of data in the data-
(52) US.CL use proﬁ]e,
CPC ... GOG6F 12/0862 (2013.01); GO6F 12/0871

(2013.01); GO6F 12/12 (2013.01); GO6F

801

Get Common
Storage
Profile List

8

14 Claims, 10 Drawing Sheets

/ 800

~

802 — 03 ™
Access Map list Data
APP DIR Blocks to
INS files SYS LBAs

YES

l 804

Assemble CS

Profile of LBASJ

for APP
l 805
Store CS /
Profile for
tse
806
Next
APP?
NO 807

END

US 9,384,137 B2

Sheet 1 of 10

Jul. §5,2016

U.S. Patent

My A0 [S1]

+«+—» igd ele(g

> WVId
701
4 _ _
uonedrddy S
SSI J[[onuo)
Sunsixg Sunsixy or101§ Funsixg

[moﬁ

ST\

101 K

US 9,384,137 B2

Sheet 2 of 10

Jul. §5,2016

U.S. Patent

Z 81y

WASY MS e]

...... > U] JOJUOA /uOIIRINS 3 U0))
<+ igd vie(q

LOT
«

Jo[jonuo))
03r101g Supsixyg

» \ ooedg poatesay
' WY /
IDALI(] I 0T

|

$0T _
03e101g

eje <
weIdosd mcsmmmm
Arejdwaxyg et

(4114

/g U N

US 9,384,137 B2

Sheet 3 of 10

Jul. §5,2016

U.S. Patent

u Jwen
u uoneoddy

1 sweD)
[uonesyddy

10¢

4

1€

(4113

US 9,384,137 B2

Sheet 4 of 10

Jul. §5,2016

U.S. Patent

!

p S

uopeIngpuod pue dmas [NH

uonedipdde paidojas 4
JO younej 10319(] ;

::VK
\» 90¥

aYord OJUl
sy passt peo]

l NV 2A1059Y
7y
oy

i
=

Aimn
uonRINSIuUod 11e1s

~

14 SOA
ON F & $20p ‘weisord yoea 104
J N
mov
9ZIS YOBI 1S ‘AY0oLd
01 swerdoid s3109]9s 138N
A
v

sweigord 9]qeInooxa

{SISIXQ 181 91q®1 vd'] Q

‘ﬁ 10] WASAS 180y uBdg

10v K

US 9,384,137 B2

Sheet 5 of 10

Jul. §5,2016

U.S. Patent

dlqel V1 °AeS
A
60¢

A 3lqel g1 aepdp

80¢ "

LOS j SOA
ﬁ ' PASOT) WrISox

OZ ﬁ Oﬁu ﬁo ﬁ.m

yﬂ sveTowpdn |

S 814

SO X

{pasor) wieidoig

Y vy eaes
‘sy g1 Fuppen doig
7 3

'

|
ﬁ

S0¢
v0S
BIEp Yyowrd ISI] YT 23Ba1d
O1jjen eiep IONUON
/'y
£0s

SOA

f

\ﬁ ‘O13Je1) BlRp JOJIUON gl

90S K

uvonexado vonesijdde Suiyoe)

oZﬁ

UOUNE] O] JSIL]

JO youney 10310

0
c0s
weidoid paoafas T
10¢S

US 9,384,137 B2

Sheet 6 of 10

Jul. §5,2016

U.S. Patent

909

IST VT AL

{Paso]) weagolg

A s[qer yg1 avepdn

A

181 V1 depdn
‘o1jyen g] JOMUOIN

K A
S09

9 Sy

100q woij uonerado uoneordde Suryoe)

NV 01 95RI0)S WOIJ
SV 4’1 paist] peo]

* 09

NV 3A1989Y

4 €09
SOA

Y

ON

(SISIX0 18 VE'T

H 209

100q Jadwo)

/5@

US 9,384,137 B2

Sheet 7 of 10

Jul. §5,2016

U.S. Patent

L Ol
A A A A A A
INOd
SRR e orepdn
< aoe) 5000y | toneiadp) oy >
. ANOA R
. ele(d IXAN 2yoe) >
- JUOr)) SSA00Y > Asoﬁﬁoac ayoe) >
~ youne 199191 < INOd
Jyor)) peojald >
< nALugeY | ANOd
dyyoid >
wosn) < |« >
apary || uorssag Suiddejy
h elep ISI] 9AI9S
J[1J01J UOWIO)) 125) >
< HNOd
301 UOwo) >
uonedrddy 10910 101 329Uy

@oumo:&/\ u @oz.ﬁ 11 nQ Tq:som Bmu mmmmv oaom& m 12]]013U0)) u ﬁ a3e10)g u

|H /con (mow //voh ,/ 0L ,/ 10L r 0L

00L

peojumog

U.S. Patent

Jul. §5,2016

Sheet 8 of 10

801

Get Common
Storage
Profile List

802

803 \

US 9,384,137 B2

K 800

Access Map list Data
APP DIR Blocks to
INS files SYS LBAs
l 804
Assemble CS J
Profile of LBAs
for APP
v 805
Store CS J
Profile for
Use
806
YES Next
APP?
807

lNO
(" enp

Fig. 8

>

U.S. Patent

Jul. §5,2016

901

N

900

.

902

903

Sheet 9 of 10

Retrieve
LBA profile
for Application

Determine
Size of
Cache/RE

Preload

Evict LBA Y

A\\EJBA APP Data

L mnto Cache

Monitor

Y

access to
RES Cache

!

907

from Cache J‘

Fig. 9

US 9,384,137 B2

US 9,384,137 B2

Sheet 10 of 10

Jul. §5,2016

U.S. Patent

dnoin

01 14

0001

A

180 Jos()

¢001

~

IOPIAOL 90IAIDS 1odojaaa(uoneorpddy
P A v R
) S001 _— 8001 >
e \]
9001 311101 vle(q BN SddV ./
\ 6001 = LOOT M = || ¥001
001
MS MS

—~

0101

\ 1001

1101

US 9,384,137 B2

1
PROGRESSIVE PRE-CACHING

CROSS-REFERENCE TO RELATED
DOCUMENTS

The present application is a continuation-in-part of U.S.
Ser. No. 14/188,304 filed on Feb. 24, 2014, and entitled
“Deterministic Pre-Caching”. All disclosure of the parent
application is incorporated at least by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is in the field of general-purpose
computers, and pertains particularly to pre-caching data to
DRAM memory for specific applications.

2. Discussion of the State of the Art

Computer systems typically have data storage systems
from which data is read and to which data is written during
program execution. Permanent storage is typically accom-
plished via a disk drive or other persistent media. Computers
also typically have Dynamic Random Access Memory
(DRAM), which is volatile memory, meaning that the con-
tents are lost when power is switched off. It is well known that
read and write data access is generally slower with persistent
media than with DRAM. Because of this, computers in the art
often temporarily hold some data in DRAM for quicker
access by the central processing unit (CPU). Loading this data
prior to the time when it needs to be accessed is called pre-
caching.

For optimal performance, computer programs and appli-
cations need to access most urgent and frequently used data as
quickly as possible. The system will typically learn to cache,
making that data more readily available. Still, the machine
learning takes time, and does not always produce the opti-
mum performance, especially in the case of certain applica-
tions which may need to access large amounts of infre-
quently-used data. Therefore, what is clearly needed is a
method to enable the computer to configure DRAM to have a
cache portion, and to cache data in a manner to optimize
performance for data-intensive programs that are important,
but are not necessarily cache-friendly.

BRIEF SUMMARY OF THE INVENTION

In one embodiment of the invention a system is provided
comprising a first computerized appliance having connection
to anetwork, a processor, at least one persistent memory data
repository coupled thereto, a dynamic random access
memory (DRAM), and software (SW) executing on the pro-
cessor from a non-transitory medium, the SW providing a
process of installing an application for which data caching is
desired, storing data to be used in execution of the application
at available persistent storage block addresses, mapping logi-
cal block addresses at which particular data is stored to data in
an order of expected use according to a data-use profile acces-
sible to the installation process, the data-use profile listing an
expected order of data use in execution of the application,
configuring the DRAM with a cache of a specific data capac-
ity, transferring a block of data equal to the cache size into the
cache according to the order of data in the data-use profile,
and as data is used in execution of the application, emptying
used data from the cache and transferring not-yet-used data
from persistent storage into the cache according to the order
of data in the data-use profile.

In one embodiment of the system the data use profile is
developed by tracking data use by one or more computerized

10

15

20

25

30

35

40

45

50

55

60

65

2

appliances in execution of the application. Also in one
embodiment the data-use profile is developed in cooperation
with a vendor ofthe application. Also in one embodiment data
transfer into the cache is block-by-block in the order of the
data-use profile as used data is evicted from the cache. Still in
one embodiment data transfer into the cache is periodic and
determined by pre-determined time or data size. In yet
another embodiment data called in execution that is not found
in the cache is read from persistent storage. And in one
embodiment actual data use in execution of the application is
tracked and compared to the data-use profile, and wherein
periodic correction to the data-use profile is made accord-
ingly.

In another aspect of the invention a method is provided
comprising installing an application for which data caching is
desired in persistent memory of a first computerized appli-
ance having connection to a network, a processor, at least one
persistent memory data repository coupled thereto, a
dynamic random access memory (DRAM), and software
(SW) executing on the processor from a non-transitory
medium, storing data to be used in execution of the applica-
tion at available persistent storage block addresses, mapping
logical block addresses at which particular data is stored to
data in an order of expected use according to a data-use profile
accessible to the installation process, the data-use profile
listing an expected order of data use in execution of the
application, configuring the DRAM with a cache of a specific
data capacity, transferring a block of data equal to the cache
size into the cache according to the order of data in the
data-use profile, and as data is used in execution of the appli-
cation, emptying used data from the cache and transferring
not-yet-used data from persistent storage into the cache
according to the order of data in the data-use profile.

In one embodiment of the method the data use profile is
developed by tracking data use by one or more computerized
appliances in execution of the application. Also in one
embodiment the data-use profile is developed in cooperation
with a vendor ofthe application. Also in one embodiment data
transfer into the cache is block-by-block in the order of the
data-use profile as used data is evicted from the cache. Still in
one embodiment data transfer into the cache is periodic and
determined by pre-determined time or data size. In another
embodiment data called in execution that is not found in the
cache is read from persistent storage. And in one embodiment
actual data use in execution of the application is tracked and
compared to the data-use profile, and wherein periodic cor-
rection to the data-use profile is made accordingly.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is an architectural illustration of a typical prior art
computer system showing data paths.

FIG. 2 is an architectural illustration of a computer system
utilizing cache optimization according to an embodiment of
the present invention.

FIG. 3 is an exemplary screen shot of a Graphical User
Interface according to an embodiment of the present inven-
tion.

FIG. 4 is a process flow chart illustrating configuration of a
computer for program optimization, using a GUI interface
according to an embodiment of the present invention.

FIG. 5 is a process flow chart illustrating a caching appli-
cation operation following launch of a program in an embodi-
ment of the invention.

US 9,384,137 B2

3

FIG. 6 is invention process flow chart illustrating a caching
operation following computer boot in an embodiment of the
present invention.

FIG. 7 is a sequence diagram depicting interaction between
basic components involved in progressive data pre-caching
according to an embodiment of the present invention.

FIG. 8 is a process flow chart depicting steps for mapping
data sets specific to a software application to local block
addresses specific to a user’s data storage profile on a particu-
lar computing appliance.

FIG. 9 is a process flow chart depicting steps for pre-
caching of application data and maintaining data caching for
a running application.

FIG. 10 is a block diagram depicting a commercial rela-
tionship between an application developer and a service pro-
vider relative to a common user test group.

DETAILED DESCRIPTION OF THE INVENTION

In various embodiments described in enabling detail
herein, the inventor provides a system for progressive pre-
caching of data for an application running on a computerized
appliance. The present invention is described using the fol-
lowing examples, which may describe more than one relevant
embodiment falling within the scope of the invention.

FIG. 1 is an architectural illustration of a typical prior art
computer system showing data paths. In the prior art, appli-
cation 103 executing on the CPU (not shown) of the computer
receives data from disks 102 or other persistent storage
through existing storage controller 101. Application 103 can
also be served data from DRAM 104, if needed data is in fact
stored in the DRAM. If the application is infrequently used
and uses large amounts of data, typical DRAM will not make
much difference in the storage performance of the applica-
tion. The system will typically ‘learn’ to cache, making
needed data more readily available. Still, the machine learn-
ing takes time, and does not always produce the optimum
performance, especially in the case of certain applications
which may need to use large amounts of infrequently-used
data. In the existing art illustrated by FIG. 1 there is no facility
for a user to select programs for pre-cache optimization.

FIG. 2 is an architectural illustration of a computer system
utilizing deterministic pre-caching optimization according to
an embodiment of the present invention to optimize perfor-
mance of an example program 203 running on the computer
CPU (not shown). In one embodiment a user obtains and
installs deterministic pre-caching software (SW) which
includes a filter driver 205 and a SW agent 206. The pre-
caching SW may be downloaded from a website, or may be
provided in another manner, such as on a portable memory
device or disk.

Once installed, the pre-caching SW loads and runs in the
background when the computer is booted. The first time the
SW executes SW, Agent 206 initiates a scan of all persistent
storage 202 coupled to the computer, through existing storage
controller 201, to find executable application files. On
completion of the scan SW Agent 206 populates and displays
a list of the executable application files found in a GUI win-
dow as shown for example in FIG. 3. The GUI window is
enabled with interactive indicia enabling the user to accom-
plish a number of objectives such as choosing applications to
be optimized, selecting the priority of optimization of indi-
vidual or groups of applications and selecting the amount of
DRAM memory 207 to allocate as cache for individual or
groups of applications.

FIG. 3 is an exemplary screen shot of a Graphical User
Interface according to an embodiment of the invention. In

10

25

30

40

45

65

4

using the deterministic pre-caching SW of an embodiment of
the invention a graphical user interface 301 is provided. The
user may search for an application for optimization with
provided search window 311. The user may also browse for
applications through the browse button in selector group 303.
The selectors in group 303 also enable selecting all programs
and removing programs prior to adding to window 305. In one
embodiment the indicia include an available memory indica-
tor 309, a cache size selector 304, a cache size indicator 310
and a start stop indicator 306.

As a result of the scan of persistent storage 202 a list of
executable programs is rendered in window 302. These pro-
grams may be selected by the user and added to window 305
one ata time or in groups. Once added to window 305 the user
may prioritize the programs by selecting a program and using
arrow selector 307 to raise or lower the priority of the pro-
gram. The priority of the programs may be made individually
or in groups. The user has the ability to select the cache size in
DRAM for particular programs or groups of programs via
selector 304 which may be moved to the left or right, raising
or lowering the amount of cache used for each program.

On first execution of one of the configured programs opti-
mized by the user with interactive interface 301, filter driver
205 receives notice from Agent 206 that the application is
launching. As the program operates, Filter driver 205 moni-
tors data traffic and builds a table of Logical Block Addresses
(LBAs) to cache for this program. The table of LBAs associ-
ated with this program is saved if the program is terminated,
and the cached data for that program remains in cache in
DRAM while the computer is in operation. If the same pro-
gram is called again before the computer is shut down, in one
embodiment of the invention the SW again tracks data usage,
and if that usage differs significantly, the LBA table for that
program may be updated.

When and if monitored applications are quit or the com-
puter is shut down, LBA tables built and possibly refined
during operation are saved for later use, and in the case of a
reboot, any data cached in DRAM 204 disappears from the
DRAM. At subsequent computer boot as programs are called
and begin to execute, Filter Driver 205 manages data caching
for the programs, enabling optimized performance of the
programs.

In one embodiment a profile may be selected via drop-
down menu 308 of FIG. 3, which may contain an application
or a group of applications that a user has previously set up for
deterministic pre-caching. A user may have a profile for gam-
ing, for example, whereby certain gaming applications are
configured for deterministic pre-caching. Another user or the
same user may have a pre-configured group of applications
concerning graphics that he or she has pre-configured to use
deterministic pre-caching software according to an embodi-
ment of the present invention. In one embodiment the GUI
may include a group of links 312 that enable the user to
purchase software, upgrade software, register software or get
help with software.

FIG. 4 is a process flow chart illustrating configuration and
setup using the GUI interface of FIG. 3 according to an
embodiment of the present invention. In one embodiment a
configuration utility is initiated at step 406. Once the configu-
ration utility is initiated the system initiates a scan of the host
system at step 401 to find executable programs. The execut-
able programs are listed in interface 302 of FIG. 3. At step 402
the user selects programs among the listed programs to cache
and selects the cache size. The system determines in step 403
if a LBA table exists for the selected program. If so, then a
portion of DRAM is reserved at step 404. At step 405 the data
at the LBAs from the table are loaded into the reserved

US 9,384,137 B2

5

DRAM cache. If at step 403 it is determined that an LBA table
does not exist, then control goes to step 407 to continue to
look for launch of a selected application.

FIG. 5 is a process flow chart illustrating a caching opera-
tion according to an embodiment of the present invention,
expanding from position (1) in FIG. 4, showing operation
when a selected program is launched. In this embodiment, at
step 501, a launch of the selected program is detected. At step
502 itis determined if the launch is a first launch. Ifat step 502
it is determined that the launch of the program is a first launch,
then at step 503 the data traffic is monitored, cached, and an
LBA table is created. At step 504 a determination is made as
to whether the program has been closed or not. If the program
is closed at step 504 then the L. BA is saved at step 505. If it is
determined that the application has not been closed at step
504 then step 503 continues to monitor L.BA traffic for the
closure of the application so that an LBA table may be created
and data cached.

Ifat step 502, the launch of the program is not a first launch,
the data traffic is monitored and the LBA table is updated at
step 506. At step 507 a determination is made as to whether
the application has been closed. If the application has been
closed, then at step 508, unused addresses are removed from
the LBA table and LBAs that were accessed that were not on
the table are added to the table, then the LBA table is saved at
step 509. If it is determined that the program has not been
closed at step 507 the data traffic continues to be monitored at
step 506 until the program is closed and the LBA table can be
updated and saved at step 508 and 509.

FIG. 6 is a process flow chart illustrating a caching opera-
tion from computer boot according to an embodiment of the
present invention. At step 601, the computer is booted. Once
the computer is booted a determination is made as to the
existence of the LBA list previously created. If the LBA list is
detected at step 602, DRAM is reserved at step 603. At step
604 the data from the listed LBAs is loaded from storage to
DRAM. At step 605 the data traffic is monitored and L.BA lists
are updated. If the program is closed at step 606 the unused
LBAs are removed, LBAs not listed on the table are added,
and the LBA table is updated. If the application is not closed
at step 606 the data traffic continues to be monitored and
updated until the application is closed and the LBA table is
updated in step 607 and saved in step 608.

In one embodiment the pre-caching SW of the invention
may run in the background with no need for user input. In
another embodiment the configuration utility is pre-config-
ured with common LBA profiles for applications such that
little or no user input is needed. In this embodiment there may
be a utility for noting the directory structure of a user’s com-
puter, and processing that structure to determine data storage
characteristics enabling LBA lists pre-prepared for known
programs to be downloaded and used without user input.

An internet-connected server may be provided comprising
software executing from a non-transitory medium, and a
range of functionality including, for example, downloading
deterministic pre-caching software according to embodi-
ments of the present invention. This server also provides
services that may be accessed manually or automatically. In
the embodiment illustrated in FIG. 3 access is by drop-down
menus. The software comprising a configuration utility
executable on a CPU of a computing appliance, and a stored
database comprising information and files associated with
programs, the information and files prepared to optimize
performance of specific programs in caching operation. The
server provides an interactive interface to a browser executing
on an Internet connected computing appliance, the interactive
interface enabling a user to download the software, to be

10

15

20

25

30

35

40

45

50

55

60

65

6

installed and executed on the CPU of the computing appli-
ance, downloading configuration files to be installed on the
computing appliance, partitioning a portion of system
DRAM of the computing appliance as cache, and loading
information and files from the storage media to the cache
portion of system DRAM, optimizing performance of the
programs installed on the computing appliance.

Progressive Pre-Caching of Data

It has occurred to the inventor that the system described
above with regard to FIGS. 2 through 6 is somewhat limited
in that it captures only the initial launch LBA data up to the
size reserved for that application in the DRAM cache. More
importantly, the process stops after an application is loaded
and the cache data has been used during the load process. The
cache is no longer needed after the load, since applications
only launch once during a session. This unneeded data can be
evicted from the cache, and the next most likely to be used
data can be loaded into the freed-up space.

Ithas also occurred to the inventors that more streamlining
in cache operation for selected applications is possible
through process customization. There exists a class of appli-
cations, such as large video games, that use a great deal of
data. Since DRAM in any particular platform is limited, dedi-
cating enough data space to cache all or most of the data for
such applications is problematic. But the inventor has
observed that the order in which the large amount of data is
used for a particular application is generally the same, regard-
less of the user’s platform. Therefore the inventor provides in
another embodiment a system for progressive pre-caching of
data for such applications.

FIG. 7 is a sequence diagram 700 depicting interaction
between basic components involved in progressive data pre-
caching according to an embodiment of the present invention.
The basic components are represented by blocks at the top of
the diagram and include from left to right, a data storage 702,
a controller 701, a cache 703 (typically a portion of DRAM),
software routine 704, a filter driver 705, and an application
706 for which caching is to be accomplished.

Storage controller 701 as well as all of the other compo-
nents in this example is analogous to components 201 through
206 depicted in FIG. 2 of this specification. Reserved memory
analogous to reserved space 207 of FIG. 2 is not depicted on
cache memory 703 in this example, but may be assumed
present in this embodiment. In this example, a user operating
a computing appliance hosting components 701 through 705
may download and install a software application 706 that has
been or may be pre-selected for data pre-caching according to
one or more embodiments of the present invention.

In this embodiment the application 706, which may be a
video game or other application using large amounts of data,
is downloaded (arrow Download) and installed on the user’s
computing appliance along with a common data storage pro-
file for the application. A common data storage profile for the
application represents the most common data use profile
order for the application. A common storage profile in this
example is a list of data files that represents the order that data
will be called during execution by any user. Such a data order
profile is generated in one embodiment from data aggregated
from multiple users interacting with the application. A com-
mon data storage profile for an application may be created by
monitoring a relatively large group of users interacting with
the application and identifying the data called during run time
and giving priority to data that has been called at a higher
percentage rate relative to all of the users among the group.
Such a profile may be created in cooperation with a vendor of
avideo game, for example, or may be created by an enterprise
providing the data-caching program of the instant invention.

US 9,384,137 B2

7

Computing appliances, as is well-known, may vary con-
siderably in operating systems, storage capacity, and comput-
ing power amongst multiple users. Furthermore, physical
storage format (LBA locations of application related data)
will also differ among the appliances operated by different
users.

In this example, a common data storage profile for the
application is provided with the application download and is
available to the user’s installed caching software. On instal-
lation, the common storage profile may be stored in data
storage 702 associated with or otherwise mapped to the
installed application. Filter driver 705 manages data caching
for the application. SW routine 704 represents the software of
the present invention stored on the user’s computing appli-
ance. The application for which data is to be cached may be
recognized by the filter driver 705, which may function as a
proxy between the application and storage controller 701.

In one embodiment, upon installation or during the instal-
lation process, the installer on the computing appliance or
downloaded with the application (installer not depicted) calls
filter driver 705. Filter driver 705 may store the common
profile associated with the application data by leveraging
services of storage controller 701. Controller 701 stores the
profile and notifies, in this embodiment, software routine 704.
Routine 704 may, after installation and registration of the
application, call storage controller 701 and request access to
the common storage profile that came with the application.
The controller causes service of the data from data storage
702. The data is in list form and represents the most common
application data used during application launch and contin-
ued operation.

In one embodiment the data includes all of the code
required for application function plus the most common vari-
able data selected or called by users of the application in
testing as described further above. SW routine 704 begins a
process of customizing the common storage profile to the
user’s specific data storage arrangement where the data is
stored in data blocks having local block addresses (LBAs) on
the user’s computing appliance storage device.

During a mapping session the generic data address list is
read and the unique data address list is created based on the
application data stored on the user’s appliance. In one
embodiment, this process only happens once after installa-
tion. In another embodiment the process may repeat for appli-
cations that continue one or more setup procedures after
initial installation, such as upon application update to further
configure and store data. The custom storage profile includes
all of the data files that comprise the application data listed in
the common profile list.

SW routine 704 calls the storage controller and requests
storage of the data listed in the profile. The controller stores
the data according to available storage addresses and blocks
in the user’s persistent storage. The data stored in the instal-
lation is all of the data that will be used in executing the
application for which data is cached. The controller confirms
data storage and the SW routine may notify filter driver 705 of
the completion of the mapping process.

Each user’s platform at the time of installation has a spe-
cific DRAM available, and the cache size is determined at
least in part by the overall DRAM size and how much may be
occupied by other programs. When the user launches the
application after installation and cache configuration, filter
driver 705 may call the custom storage profile for the installed
application 706 and may preload cache 703 with the first
LBAs in the list up to the amount of memory that has been
made available for the cache for the application.

25

30

35

40

45

50

55

8

Upon request from filter driver 705, storage controller 701
preloads cache 703 with the application data. In one embodi-
ment the process of preloading the cache with the application
data is performed after every boot of the user’s appliance. In
one embodiment the process of creating a custom storage
profile and preloading the cache with the initial data happens
automatically upon download and install of the application
whether the application is designed to self-execute upon
download and install or whether the user must manually
install the application.

Filter driver 705 may continuously monitor for execution
of'the application on the personal computing appliance of the
user and may detect launch of application 706, in this case
first time execution of the application. The application
accesses reserved cache memory directly through filter driver
705 for the preloaded data bypassing storage controller 701.
The cache operation results in service of the sequential data
LBA by LBA from cache to the application. As the data is
used by the application, the read data may be evicted from the
cache and the next block of data according to the custom
profile list created during the mapping process may be loaded
into the newly-available cache space. Alternatively the sys-
tem may wait until a predetermined portion of the cache is
emptied, or even until all of the cache is free before loading
next blocks according to the profile.

Itwill be apparent to one with skill in the art that the process
(repeated cache operations) is ongoing while the application
is running unless it is idling or in sleep mode or is otherwise
open but not active. At each operation, the next data preloaded
into cache represents the data the user will most probably
require based on the statistics associated with the testing of
the application and development of the common profile.
However, that does not guarantee the user will be able to use
the cached data in every preloaded data block. In the case that
the application requires data that has not been preloaded into
cache, the filter driver gets the data from persistent storage
through the connection with the storage controller.

In a preferred embodiment the filter driver captures what
data is actually called during the session with the application
documenting the actual data list as called compared to the
data list in the custom profile. If user data is repeatedly called
from persistent storage that is not listed in the custom profile
for the application, the LBAs containing that data might be
added to the list, replacing data previously occupying that
position in the custom list.

Filter driver 705 may detect closing of application 706.
Filter driver 705 may then request update for the custom
storage profile. Storage controller 701 may then update the
custom storage profile. In one embodiment filter driver 705
may request updates to the custom profile before closing the
application, such as periodically during the life of the appli-
cation session. In this way computer failure or power failure
would not result in significant loss of any data.

In an example where the system may update the custom
profile, consider a video game where during first session play
in testing for common profile users select a particular game
piece or accessory or passage way at a higher percentage rate
precluding loading of that data into the cache according to the
custom profile during play on the user’s appliance. The user
may prefer some other game piece, accessory, or passageway
at a rate as high or higher than the testing ratio for the cached
data. The system may learn preferences of the user and
modify the custom data storage profile for the application.

FIG. 8 is a process flow chart 800 depicting steps for
mapping data sets specific to a software application to local
block addresses specific to a user’s data storage profile on a
particular computing appliance. In step 801 the SW routine

US 9,384,137 B2

9

analogous to routine 704 of FIG. 7 gains access to a common
storage profile list for an application that has been selected by
the user for caching according to an embodiment of the
present invention. Access to the common profile may be
provided through a data storage controller or obtained from a
remote server. The profile may contain the most common data
called during runtime based on accounts of multiple users
grouped together to test the application, as described above.

In step 802, the system accesses the application directory
and installation files noting the local block addresses for the
data in persistent storage. In step 803 the routine maps the
data in the common profile to the data in persistent storage to
determine the LBAs containing the data. In step 804 the
system assembles or otherwise generates a custom data stor-
age profile of LBAs for the application. The custom profile
provides a list of LBAs containing the actual application data
listed in the common profile. The LBA list is serially ordered
in a fashion based on the order of the data listed in the
common profile.

Once the custom storage profile is created the system may
store it for later use at step 805. The process may then be
complete for that application. A custom storage profile pro-
vides the caching SW with the list of LBAs containing the
data to be pre-cached. At step 806, it may be determined if
there is another application waiting for the mapping process.
If it is determined that another application with a common
profile needs mapping, then the process may loop back to step
801 where the system gets the common storage profile for the
next application slated for data pre-caching. If there is no
other application listed for mapping the process ends at step
807. The system essentially uses the common profile as a
template to locate the actual LBAs containing the data for
pre-caching.

FIG. 9 is a process flow chart 900 depicting steps for
pre-caching of application data and maintaining data caching
for at least one application. It is assumed in this process that
at least one application is installed and ready to execute on a
user’s computing appliance and has an . BA profile stored for
that application. At step 901 the system retrieves the LBA
profile for an application. An [.BA profile refers to a custom
data storage profile that includes identification and order of
the LBAs for the application files and data in persistent stor-
age.

At step 902, the system may determine the size of cache
memory for the running application. In one embodiment a
user operating a user interface analogous to interface 301
described with reference to FIG. 3 above may accomplish
this. In another embodiment the system may perform the
operation any time before pre-caching actually begins for the
application. The actual size of the amount of cache allotted for
pre-caching of data for a specific application may depend in
part on the type of application, for example video game vs.
word processing application, or on a priority of the applica-
tion relative to other running applications on the user’s com-
puting appliance. In one embodiment a user may set the size
of reserved cache memory for an application while in other
embodiments the system may set reserved cache size.

In step 903 the system preloads LBA data from persistent
storage into the cache memory reserved for that application.
In one embodiment preloading may continue until the system
determines if the reserved cache limit is reached for that
application. If the cache limit is reached at step 904 for that
application, the process may be finished for that application.
If it is determined that cache limit has not been reached for
that application in step 904 the process may loop back to step
903 until the reserved cache for that application is full.

10

15

20

25

30

35

40

45

50

55

60

65

10

At step 905 the system determines if there is another appli-
cation installed that needs preloading into cache. If there is
another or next application to preload at step 905, the process
may loop back to step 901 where the system obtains the LBA
profile for that application. At step 906 the system (filter
driver) monitors application access of reserved cache
memory that is preloaded with data for that application. In
one embodiment more than one instance of driver is activated
for more than one application running and accessing cache
memory to read preloaded data.

For each accessing application the system determines if a
block of data preloaded into cache has been read by the
accessing application. If it is determined that no data has been
accessed by an application the process loops back to step 906
where monitoring continues for each application having pre-
loaded data in cache memory that has been reserved specifi-
cally for that application. If it is determined that at minimum
ablock of data has been read at step 907 then the system (filter
driver) may evict the block of data from cache in step 908. The
process may resolve to step 903 where the driver may preload
the next LBA block of data from persistent storage into the
reserved cache. The process loop may continue as long as the
application is running. Step 907 may operate block-by-block,
or may have a time or data size limitation for eviction and
reloading the cache.

In one embodiment the reserved cache memory for a spe-
cific application is periodically preloaded with data during
application runtime such as at every read of x blocks of data.
In the event that the application requests data that is not
preloaded in cache reserved for that application, the filter
driver may obtain the data from persistent storage through the
storage controller. The filter driver may keep record of the
data blocks accessed from persistent storage so that the cus-
tom storage profile list may be modified by adding [.LBA data
if deemed statistically prudent by processing logic.

As the cache is accessed, data is evicted from cache and the
next block data in the custom block list may be loaded in its
place, according to a pre-determined plan. Pre-loading of the
cache can be done as a best-effort background task such that
performance of the primary application (game) is minimally
impacted. If the filter driver falls behind storage requests, or
there is a cache miss, requested data may be read from the
original storage source on the user’s computing appliance and
or connected peripheral (remote storage) at whatever speeds
that device and network supports. If there is pre-cached data
that according to the custom profile will no longer be needed
it may be evicted even if it was not accessed.

FIG. 10 is a block diagram 1000 depicting a commercial
relationship between an application developer and a service
provider connected to a network accessible to a targeted user
test group 1003. Diagram 1000 depicts a service provider
domain 1002. Service provider domain 1002 represents the
network domain of a provider of pre-caching software and
services. Service provider domain 1002 includes an informa-
tion server 1005 having connection to a network backbone
1006. Network backbone 1006 may represent a wide area
network such as the Internet network.

Server 1005 includes a processor, a data repository and a
memory containing thereon all the data and instruction
required to provide the function of information server. Server
1005 has connection to a data repository 1009 containing data
relative to common data storage profiles generated by the
service provider from data mined from user test group 1003
while interacting with applications served to the group. A
common storage profile for an application represents a list of
the “most called” data during sessions with an application and
the multiple users in the testing group.

US 9,384,137 B2

11

In this embodiment an application developer domain 1001
is depicted. Application developer domain 1001 may repre-
sent a provider of video gaming services for example.
Domain 1001 includes an application server 1004. Applica-
tion server 1004 includes a processor and a data repository
and a memory containing thereon all the data and instruction
required to enable the function of application server. Server
1004 has connection to a data repository 1007 containing
applications (APPS) such as new video games in the case of
a video gaming service. User test group 1003 may represent
video gamers registered with a service provided by the entity
that is hosting domain 1001. In this sense the video game
provider and the pre-caching service provider hosting
domains 1001 and domain 1002 are partners.

Server 1005 in domain 1002 hosts software (SW) 1010.
SW 1010 may include previously described functionality as
well as functionality of processing raw activity data gathered
from multiple users testing an application in test group 1003.
The application or applications may be made accessible to
users of group 1003 through server 1004. In one embodiment,
SW 1010 may include a distributable application program
interface (API) that may be installed in a SW development
application or kit used by an application developer and that
may provide an executable monitoring or data reporting link
embedded in the application, the link reporting to server 1005
such that when a user in group 1003 executes a target game
the monitoring or reporting link opens a connection to server
1005 for real time monitoring or periodic reporting of user
activity data contained within the sessions conducted by each
user relative to an application (game).

Server 1004 in domain 1001 hosts SW 1011. SW 1011 may
be the distributable application program interface (API)
described immediately above. SW 1011 may be downloaded
from server 1005 to server 1004 or to a network-connected
developer’s personal computing appliance (not depicted). As
users play games, the activity data relative to which applica-
tion data is called by the application is made available to
server 1005 aided by SW 1010. The activity data may be
processed in aggregate by SW 1010 to determine the most
common data called by the application relative to multiple
sessions conducted by the different users. That data profile
represents a “common data profile” for the application. The
profile data may be stored in repository 1009.

It is noted herein that the process of creating common
data-call profiles for applications may be accomplished with-
out co-branding with third-party developers. For example, a
sales force application used by multiple salesmen in a single
call center or other sales department may be tested and have
a common data profile generated and associated with the
application. The common profile does not include any
addressing of data. The common profile is used to find data
stored for the application a user’s computing appliance and
then generating a list that includes the LBAs for the data on
the user’s storage device.

In one embodiment the common data profiles generated for
applications are provided to the game developer for integra-
tion into their games that are available for play. SW 1011 in
domain 1001 may also include a version of the caching SW
including the filter driver. Users in general may register for
pre-caching services through domain 1002 such services
including a download of a client application with the filter
driver and then interact with applications provided by third
parties cooperating with the service and whose applications
come with a common data profile that the client application
may convert to a custom data storage profile for pre-caching
purposes.

15

30

40

45

55

12

In another embodiment, clients of the gaming service that
play new games may be offered a SW download that enables
the pre-caching processes on those users’ computing appli-
ances with respect to the games served to those users. In this
case a link may be made available to a directory providing
access to other participating software providers. In one
embodiment a common data profile for an application is
provided only on installation of the application on a client’s
appliance and is mapped through data matching to the local
block addresses (LBAs) on that client’s storage device to
generate a custom data storage profile for the application. The
caching SW downloaded with the application or separately
may preload the cache for that application before first launch
of the application.

Over time, repeated use of the application may help
streamline the pre-caching process further by amending (add-
ing/subtracting) the custom list of LBAs according to emerg-
ing patterns of actual data called by the application. An
emerging pattern might be repetitive calling of an LBA data
block from persistent storage that is not on the custom LBA
list. After a certain threshold, the LBA data block may be
added to the custom list. Similarly an LBA data block listed in
the custom list that is not called or is no longer needed may be
removed from the custom list. The pre-caching SW uses the
list every time the application is launched and manages pre-
loading ofthe cache space reserved for that application during
interaction with the application.

It will be apparent to one with skill in that art of application
development that video games and other media rich interac-
tive applications represent just one type of software applica-
tion that may be configured for pre-caching. There are many
other examples of applications that may be adapted for cache
space reservation and pre-caching. Other types of applica-
tions that may be adapted for pre-caching include word pro-
cessing applications, visual design applications, Web design
and presentation applications, quality control applications,
sales management applications, transactional databases, and
SO on.

In one embodiment of the present invention the pre-cach-
ing SW may also take instruction from a user-populated tem-
plate or other form of instruction (from system or user) that
specifies a priority scheme for multiple stored applications
that are enabled for pre-caching. For example a user might
have five applications on a computing appliance enabled for
pre-caching. Such applications may be used separately on the
appliance (shutting one down before opening another) or they
may be run in tandem with one another (multiple applications
open).

While cache memory may be reserved for all five applica-
tions, the pre-caching software may decide by assigned appli-
cation priority and the available amount of total reserved
cache space in cache memory, which of the running applica-
tions, pre-caching will be reserved for and which of the run-
ning applications will not have pre-caching available for a
session or more. In this way the most critical of a user’s
running applications are optimized for pre-caching while less
important applications may wait until the user is no longer
operating the more critical applications. Of course cache
memory size and application density plays a role in what can
be effectively accomplished on a unique computing appli-
ance. The system of the invention is scalable to include pow-
erful computing systems that may run multiple applications
simultaneously.

SW 104 may include a user interface as previously
described in this specification. The user interface may contain
a setting for a user to group applications for pre-caching by
priority. In one embodiment information about a user such as

US 9,384,137 B2

13

application launch activity of the user during a pre-specified
period of time may be used to determine automatic priority
settings for a group of applications enabled for pre-caching.
For example, a user at work may use a particular application
more in the beginning of the week (Mon thru Wed) while
another application may be used more often later in the week
(Wed thru Fri).

The system may automatically prioritize the first applica-
tion over the other application on Mon thru Wed and it may
prioritize the other application over the first one from Wed to
Fri. A user may specify this in upfront configuration of appli-
cations slated for pre-caching or the system may “learn it”
through repeated application use on the appliance. The sys-
tem may purge data collected or aggregated for determining
custom profile adjustments for an application and data
retained or aggregated for determining application priority
for pre-caching after that data is no longer needed by the
system.

In one embodiment pre-caching is provided for a comput-
ing appliance that may be shared by multiple users. In this
case, the users may have to log-into the system so that their
own custom application data profile is followed for pre-cach-
ing the applications accessible to that user under after logging
in.

It will be apparent to a skilled person that the embodiments
described in enabling detail above are exemplary only, and do
not describe every way the present invention may be imple-
mented and practiced. SW may be implemented in different
ways in different circumstances to accomplish the same or
very similar results. There are also many different ways that
computer systems may be implemented that might use the
SW according to embodiments of the present invention. The
invention is limited only by the claims that follow.

The invention claimed is:

1. A system comprising:

a first computerized appliance having connection to a net-
work, a processor, at least one persistent memory data
repository coupled thereto, a dynamic random access
memory (DRAM), and software (SW) executing on the
processor from a non-transitory medium, the SW pro-
viding a process:

installing an application for which data caching is desired,
storing data to be used in execution of the application at
available persistent storage block addresses;

mapping logical block addresses at which particular data is
stored to data in an order of expected use according to a
data-use profile accessible to the installation process, the
data-use profile listing an expected order of data use in
execution of the application;

configuring the DRAM with a cache of a specific data
capacity;

transferring a block of data equal to the cache size into the
cache according to the order of data in the data-use
profile; and

as data is used in execution of the application, emptying
used data from the cache and transferring not-yet-used
data from persistent storage into the cache according to
the order of data in the data-use profile.

10

15

20

25

30

35

40

45

50

55

14

2. The system of claim 1 wherein data transfer into the
cache is block-by-block in the order of the data-use profile as
used data is evicted from the cache.

3. The system of claim 1 wherein data transfer into the
cache is periodic and determined by pre-determined time or
data size.

4. The system of claim 1 wherein data called in execution
that is not found in the cache is read from persistent storage.

5. The system of claim 1 wherein actual data use in execu-
tion of the application is tracked and compared to the data-use
profile, and wherein periodic correction to the data-use profile
is made accordingly.

6. The system of claim 1 wherein the data use profile is
developed by tracking data use by one or more computerized
appliances in execution of the application.

7. The system of claim 6 wherein the data-use profile is
developed in cooperation with a vendor of the application.

8. A method comprising:

installing an application for which data caching is desired

in persistent memory of a first computerized appliance
having connection to a network, a processor, at least one
persistent memory data repository coupled thereto, a
dynamic random access memory (DRAM), and soft-
ware (SW) executing on the processor from a non-tran-
sitory medium, storing data to be used in execution of the
application at available persistent storage block
addresses;

mapping logical block addresses at which particular data is

stored to data in an order of expected use according to a
data-use profile accessible to the installation process, the
data-use profile listing an expected order of data use in
execution of the application;

configuring the DRAM with a cache of a specific data

capacity;

transferring a block of data equal to the cache size into the

cache according to the order of data in the data-use
profile; and

as data is used in execution of the application, emptying

used data from the cache and transferring not-yet-used
data from persistent storage into the cache according to
the order of data in the data-use profile.

9. The method of claim 8 wherein data transfer into the
cache is block-by-block in the order of the data-use profile as
used data is evicted from the cache.

10. The method of claim 8 wherein data transfer into the
cache is periodic and determined by pre-determined time or
data size.

11. The method of claim 8 wherein data called in execution
that is not found in the cache is read from persistent storage.

12. The method of claim 8 wherein actual data use in
execution of the application is tracked and compared to the
data-use profile, and wherein periodic correction to the data-
use profile is made accordingly.

13. The method of claim 8 wherein the data use profile is
developed by tracking data use by one or more computerized
appliances in execution of the application.

14. The method of claim 13 wherein the data-use profile is
developed in cooperation with a vendor of the application.

#* #* #* #* #*

